If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)+x=1190
We move all terms to the left:
(x^2)+x-(1190)=0
a = 1; b = 1; c = -1190;
Δ = b2-4ac
Δ = 12-4·1·(-1190)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-69}{2*1}=\frac{-70}{2} =-35 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+69}{2*1}=\frac{68}{2} =34 $
| 2x+8=56(2) | | 2x+3(3x+16)=-7 | | 8-3x^2=-22 | | 2x2+10x+4=0 | | 2.1q-7.7=1.1q+.832 | | 10x-8=5x=8 | | -2-t=64 | | -35+7x=0 | | -5(3y-10)+4y=28 | | (x-3)+25=0 | | 3(x-10)=60+x | | 6x-21=2x+10 | | 4(2y-2)+5y=31 | | 2/3x+8/3=3/2x-3/2 | | 2/3(x+4)=1/2(3x-3) | | -8x-16+24=-40 | | 4+b=27 | | h/7-6.5=1.2 | | 1/x=11/3x+10 | | 2(2.25x+8)=11 | | 1/3+z=5/4 | | 81/2+2x=381/2 | | 127x−79=23 | | 81/2+2x=36.5 | | -3=4/3x+5 | | d+0.5=0.70 | | Y-7+4y=134 | | 30+10x-10=11x+2 | | (4x+3)=189 | | (5x+30)+175=180 | | (3y-7+y+3)/2=y+6 | | -21+x=-12 |